
214 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

Wireless Network Instabilities in the Wild:
Measurement, Applications (Non)Resilience,

and OS Remedy
Yong Cui , Member, IEEE, Yimin Jiang, Zeqi Lai, Xiaomeng Chen, Y. Charlie Hu, Fellow, IEEE,

Kun Tan, Member, IEEE, ACM, Minglong Dai, Kai Zheng, Senior Member, IEEE, and Yi Li

Abstract— While the bandwidth and latency improvement of
both WiFi and cellular data networks in the past decades are
plenty evident, the extent of signal strength fluctuation and
network disruptions (unexpected switching or disconnections)
experienced by mobile users in today’s network deployment
remains less clear. This paper makes three contributions. First,
we conduct the first extensive measurement of network disrup-
tions and significant signal strength fluctuations (together denoted
as network instabilities) experienced by 2000 smartphones in
the wild. Our results show that network disruptions and signal
strength fluctuations remains prevalent as we moved into the
4G era. Second, we study how well popular mobile apps today
handle such network instabilities. Our results show that even
some of the most popular mobile apps do not implement
any disruption-tolerant mechanisms. Third, we present Janus,
an intelligent interface management framework that exploits the
multiple interfaces on a handset to transparently handle network
disruptions and satisfy apps’ performance requirement. We have
implemented a prototype of Janus and our evaluation using a
set of popular apps shows that Janus can: 1) transparently and
efficiently handle network disruptions; 2) reduce video stalls by
2.9 times and increase 31% of the time of good voice quality; 3)
reduce traffic size by 26.4% and energy consumption by 16.3%
compared to naive solutions.

Index Terms— Mobile computing, network disruption, network
instability, multi-interface selection, network measurement.

I. INTRODUCTION

MODERN mobile devices such as smartphones and
tablets have become ubiquitous thanks to the rapid

development of high speed WiFi/cellular technologies. Both

Manuscript received November 25, 2017; revised April 20, 2018 and
September 24, 2018; accepted November 24, 2018; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor H. Seferoglu. Date of publication
December 27, 2018; date of current version February 14, 2019. This work
was supported in part by the NSFC under Grant 61872211 and in part by
the National Key R&D Program of China under Grant 2017YFB1010002.
(Corresponding author: Zeqi Lai.)

Y. Cui, Y. Jiang, and Z. Lai are with the Department of Computer
Science and Technology, Tsinghua University, Beijing 100084, China (e-mail:
cuiyong@tsinghua.edu.cn; jymthu@gmail.com; uestclzq@gmail.com).

X. Chen is with Apple Inc, Cupertino, CA 95014 USA (e-mail:
minarchen@gmail.com).

Y. C. Hu is with the School of Electrical and Computer Engineering, Purdue
University, West Lafayette, IN 47907 USA (e-mail: ychu@purdue.edu).

K. Tan and K. Zheng are with Huawei Technologies Co., Ltd., Beijing
100085, China (e-mail: kun.tan@huawei.com; kai.zheng@huawei.com).

M. Dai is with the Department of Computer Science and Technology,
Beijing University of Posts and Communication, Beijing 102209, China
(e-mail: daiminglong@mail.dlut.edu.cn).

Y. Li is with Beijing Powerinfo Co., Ltd., Beijing 100080, China (e-mail:
tiger_li@263.net).

Digital Object Identifier 10.1109/TNET.2018.2885872

WiFi and cellular networks heavily used by mobile hand-
sets today have come a long way, and have seen drastic
improvement in bandwidth and latency (e.g., [1], [2]). The
increasingly improved wireless network raises the prolifer-
ation of new applications that require extreme networking
performance (e.g., high bandwidth or low latency), such as
immersive Virtual Reality [3], [4], Augmented Reality [5],
cloud gaming [6], mobile chatting [7], and dynamic adaptive
streaming (e.g., YouTube and Netflix) [8], [9] on mobile
devices. However, as mobile handsets are intrinsically mobile,
to deliver good user experience, merely providing statistically
high bandwidth and low latency is not enough, as user mobility
inevitably results in significant signal strength changes and
network disconnection and reconnection, collectively denoted
as network instabilities.

To understand the extent of such network instabilities and
hence their impact on the user experience of apps in today’s
networks, we perform a large scale measurement study of
the occurrence of network instabilities experienced by 2000
normal users in their daily life, covering 31.9 days on average
and 291 mobile operators in total. Our study shows that
network disruptions happen every day in daily mobile device
usage and can directly impact user experiences. In particular,
we found (1) On over 30% of the devices, the user experi-
ences more than 25 WiFi disconnections and reconnections
and more than 24 cellular data network disconnections and
reconnections per day on average. Similarly, on over 10%
of the devices, on average the user experiences more than
6.8 and 42 severe signal strength drop episodes of over 10 dBm
per day when using WiFi and cellular data, respectively.
(2) More importantly, on over 10% of the devices, over
3.9 and 3.0 foreground network sessions in a day experience
at least one network disconnection in WiFi and cellular data,
respectively. Similarly, on over 5% of the devices, over 1.7 and
5.3 foreground network sessions in a day experience signal
strength decrease of at least 10 dBm in WiFi and cellular
data interface, respectively. We note that while signal strength
fluctuation is normal in daily usage, 10 dBm is a threshold that
denotes significant strength changes that can impact upper-
level user experiences [10].

Given network instabilities remain commonplace in today’s
WiFi/cellular deployment, ideally apps are expected to handle
network disruptions well. However, our measurement study of
a set of popular apps reveals a gloomy picture. As shown in the

1063-6692 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5171-739X

CUI et al.: WIRELESS NETWORK INSTABILITIES IN THE WILD 215

measurement results, even some of the most popular mobile
apps do not implement any disruption-tolerant mechanisms
(§II). The apps get stuck and fail to automatically resume
data transmission when a network disruption happens, which
leads to poor user experience. A primary reason for this
status-quo is that the lack of programming API support for
disruption processing makes it challenging for developers
to implement disruption handling for mobile apps. Previ-
ous approaches have tried to address network disruptions in
mobile networks [11]–[13]. However, the applicability of these
approaches is limited as they require modifying the network
infrastructure (e.g., the base station), the app interface, or the
server side.

This paper proposes to address the issue by providing direct
support inside the OS. Such an approach requires no changes
to existing apps nor incurs extra programming effort from
the developers for new apps, and also does not require any
modification on the server side. Thus our approach is most
likely to see wide adoption.

We examine the interface selection policies that come
with current mobile OSes. Historically, mobile OSes adopted
the simple “WiFi-if-available” policy for interface selec-
tion [14], for two compelling reasons. First, in the pre-LTE era,
WiFi predominantly offers better performance than cellular
(2G or 3G) both in terms of bandwidth or latency. Second,
WiFi access is typically free (public hot-spots or at home)
while cellular data usage requires paid subscription. However,
both assumptions are outdated, since the performance of
cellular technologies have improved drastically [15] and that
the price of them become much more cheaper now [16]. We
argue the OS should at least offer an intelligent interface
management framework that exploits multiple interfaces to
offer improved user experience by transparently handling
disruptions and satisfying apps’ requirement on networking
without modifying the code.1

As the third contribution of the paper, we have designed and
implemented such an interface management framework called
Janus (§IV, §V). Janus is compatible with existing network
APIs and does not require modification to the app source
code. Janus has two design goals: (1) Transparent network
disruption handling: It transparently and correctly handles
network level disruptions with little effort from app devel-
opers; (2) Flexibility: The framework should be flexible to
accommodate potentially diverse app performance require-
ments (e.g., real-time or delay-tolerant traffic); (3) Efficiency:
The framework should manage requests from different apps
efficiently to reduce energy consumption caused by wasteful
suspension in high power state under long disruptions.

To meet these goals, Janus integrates four key modules.
First, Adaptation Policy allows user to easily specify the
app performance requirements in various scenarios. Second,
we design Link Selector to properly and continuously select
the appropriate interface for each app according to the current
interface quality and performance requirement given by the

1For users who are constrained by monthly cellular data plans, the OS can
extend the intelligent interface framework to further take into consideration
the month quota of the data plan. The experiment in Figure 17 shows an
example.

app’s adaptation policy. Third, Request Manager efficiently
schedules requests from different apps based on adaptation
policies and device context (e.g., battery, connectivity). Finally,
Request Handler performs transmissions of each flow on the
selected interface, and efficiently handles network disruptions.

We have implemented Janus on Android framework as a
system-level service running in the background that schedules
and performs network operations. Our evaluation of the net-
work performance of a set of real world apps shows that on
average using Janus can reduce the number of video stalls
of streaming apps by 2.9 times, and increase the duration of
good voice quality by 31%. Moreover, Janus is also able to
reduce traffic size by 26.4% and energy consumption by 16.3%
through carefully configuring adaptation policies.

This paper has open-sourced Janus2 to the Android devel-
oper community to facilitate app developers to develop robust
and efficient mobile apps and improve their user experience.

II. MOTIVATION

Both WiFi and cellular networks heavily used by mobile
handsets today have come a long way, and have seen drastic
improvement in terms of bandwidth and latency [1], [2]. Yet
little is known about the extent of network disruptions and
signal strength fluctuations experienced by mobile handsets in
the wild which can directly affect user app experience. In this
section, we present a large-scale measurement study of 2000
smartphones in the wild that answers this very question.

A. Methodology and Trace Overview

We deployed a utility app (Anonymous App) in Google
Playstore that has been downloaded on over 100,000 hand-
sets.3 The utility app performs periodic logging of the network
usage of all apps running on each phone every 5 seconds
during screen-off when CPU is on and every 1 second dur-
ing screen-on. The recorded dynamic events include: WiFi
connected and disconnected, mobile data connected and dis-
connected, screen switched on and off, WiFi and cellular
signal strength change. Our trace data contains logs from 2000
Android devices. The logging of each device lasts in range
of 6 days to 48 days, with an average of 31.9 days and a
median of 32 days. It covers 342 phone models, 16 Android
OS versions and 291 mobile operators.

B. Analysis and Observation
Time Spent in WiFi and Cellular States: To get an intuition

of the users behaviors using smart phones, Figure 1 shows
the distribution of time breakdown spent when (1) WiFi
is connected, (2) WiFi is disconnected and mobile data is
connected, or (3) connected to 2G or Edge (which often cannot
satisfy modern apps requirement [10]), or totally disconnected.
We see the percentage of time spent when WiFi is connected
follows a uniform distribution approximately. Figure 2 plots
the average of the 3-way breakdown across the 2000 devices.

2https://github.com/Janus-Anonymous
3Ethical concern: our experiment using the app received exemption from the

full requirement of 45 CFR 46 or 21 CFR 56 by the IRB of our organization.
All the data collected from the handsets are anonymized before uploading to
the server.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

216 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

Fig. 1. Distribution of breakdown of time spent in WiFi and cellular states.

Fig. 2. Average percentage breakdown of time spent in WiFi and cellular
states.

Fig. 3. CDF of daily average count of WiFi and cellular state changes across
users. (a) Connection and disconnection. (b) Drop of signal strength.

On average, the devices spent 47.8% of the time connected to
WiFi, 29.3% of the time when WiFi is disconnected but mobile
data is connected, and the remaining 23.0% of the time when
neither of the interface is connected.

Change of WiFi and Cellular States: We next study how
often the devices experience state change of network technolo-
gies. For brevity, we define connection as the event when the
device is connected to an available interface, and disconnection
as the event when the device is disconnected from an interface.
Figure 3a plots the CDF of counts of WiFi and mobile
data connection and disconnection, or switching between each
other. We observe that 30% of devices experience more than
25 times of WiFi connection or disconnection per day on
average, and the similar frequencies for mobile data. The
figure also shows 10% of devices experience on average more
than 7 times of switching from WiFi to mobile data and more
than 10 times of switching from mobile data to WiFi every day.
The switching between different network technologies can lead
to network disruptions, which affect user experience, resource
contention and battery usage.

We next show the statistics of significant signal strength
drop on both WiFi and cellular interfaces. Although the signal
strength of mobile network naturally fluctuates across different
locations (e.g., the LTE signal is stronger near the base
stations), we pay special attention to the scenario where the
signal strength changes significantly (e.g., Δ > 10 dBm) that

can directly affect upper-level app performance.4 Figure 3b
plots the CDF of the number of significant WiFi and cellular
signal strength decrease episodes in three drop levels between
the new signal strength and the old signal strength in dBm.
10% of the devices experience more than 6.8 and 1.3 times of
signal strength decrease of more than 10 dBm and 20 dBm for
WiFi, respectively, and more than 42 and 7.5 times of signal
strength decrease of over 10 dBm and 20 dBm for cellular,
respectively.

Change of WiFi and Cellular States During Network Ses-
sions: We further analyze the change of WiFi and cellular
states during active network sessions of these devices. Fig-
ure 4a shows the number of network sessions (i.e., continuous
network transmission of apps) experiencing WiFi or cellu-
lar disconnections or switching between the networks. The
statistics show that more than 30% of devices have 19 and
15 daily network sessions experiencing WiFi and cellu-
lar disconnection, respectively, and more than 10% of the
devices have 3.2 and 6.1 daily network sessions experiencing
switching from WiFi to cellular and switching from cellular
to WiFi, respectively, which lead to network interruptions
and session failure. Figure 4b plots the number of network
sessions experiencing signal strength decrease of WiFi and
cellular. We observe that more than 10% of the devices
have 2.3 and 8.4 daily network sessions experiencing signal
strength decreasing larger than 10 dBm, for WiFi and cellular
respectively.

We redraw the same statistics in Figure 4c and 4d, but only
for network sessions of foreground applications. Because the
network traffic of foreground applications is usually directly
involved in user interactions, the disruption of the foreground
traffic would lead to worse user experience compared to the
background traffic. Figure 4c shows that 10% of the devices
have more than 3.9 and 3.0 daily foreground network sessions
experiencing WiFi and mobile data connection/disconnection,
respectively, and 5% of the devices have more than 0.3 and
0.7 daily foreground network sessions experiencing switching
from WiFi to mobile data and from mobile data to WiFi,
respectively. Finally, Figure 4d shows that more than 5% of the
devices have more than 1.7 and 5.3 daily foreground network
sessions experiencing signal strength decreasing of more than
10 dBm for WiFi and cellular, respectively.

In summary, network instabilities almost happen every day
for normal users, and in some extreme cases the number of
instabilities can be large (e.g., up to 200 per day). More-
over, some of the instabilities even happen during network
sessions. According to our experiments in §III, most apps
cannot handle the network instabilities properly, and thus the
presence of instabilities can directly affect user experiences.
We introduce the experiments on popular apps in the following
section.

4Previous works [17]–[19] show that significant signal strength drop can
reduce the network throughput and even cause disruptions and failure of
ongoing network flows. According to the result from [17], we choose 10 dBm
as the threshold. If the signal strength drops more than 10 dBm in a short
interval (In our setup, 1s during screen-on and 5s during screen-off), it will
cause network transmission to be stuck and disrupted.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: WIRELESS NETWORK INSTABILITIES IN THE WILD 217

Fig. 4. CDF of daily average count of sessions experiencing WiFi or cellular state changes across users. (a) Connection and disconnection. (b) Drop of
signal strength. (c) Connection and disconnection during network sessions. (d) Drop of signal strength during network sessions.

III. HOW WELL DO MODERN APPS HANDLE

NETWORK INSTABILITIES?

Given the prevalence of wireless network instabilities expe-
rienced by mobile users today, we next examine how existing
mobile apps react to dynamic network conditions and network
disruptions, by studying the behavior of 30 popular apps
selected from Google Play [20] on a Nexus 6 smartphone
running Android 6.0.

A. Do Apps Exploit Network Interfaces?

We first examine if and how well current apps exploit
multiple network interfaces to improve their performance.
We note before Android 5.0, the interface selection was
completely controlled by the OS. Since version 5.0, Android
exposed several APIs (e.g., requestNetwork()) for apps
to select networks. However, the interfaced selected by the
apps are passive in that they come secondary and is limited to
what the OS has selected. For example, when both WiFi and
LTE are available but the OS selects WiFi, the app can only
select WiFi or none.

We examine whether the apps are able to use the best
network to obtain good performance under three scenarios:
(1) Low WiFi: We place the smartphone in a location where
the WiFi speed is much lower than LTE; (2) Diminishing WiFi:
We initially connect the smartphone to a high speed WiFi and
then walk away from the WiFi AP, and finally we return to
the AP; (3) Congested network load: We increase the number
of running apps and examine how apps load their flows in
wireless interfaces.

Table I summarizes the results of how apps react under
each condition, where “Not support” means that the app does
not actively select an interface and passively uses the interface
selected by the OS, and “WiFi-only” indicates that the app can
be optionally configured to only use WiFi. Overall, few apps
deploy their own selection mechanisms and the majority of
them are forced to use the interface selected by the Android
OS. However, Android follows a naive policy to use WiFi
if it is available, regardless of the actual performance of
each network. Such a policy is not intelligent to satisfy apps
performance, for either throughput-sensitive or delay-sensitive
apps.

First, the current policy is inflexible to satisfy the perfor-
mance requirements of various apps. For example, in sce-
nario (1) it is reasonable to load a cost-sensitive task like

file downloading on the slow WiFi network, but a real-time
app may expect to use the high speed LTE network to achieve
better performance.

Second, the current policy is unable to adapt to the dynamic
network conditions. Figure 5a shows an example when we
run the YouTube app in scenario (2). As the device leaves
the current network, the WiFi signal strength deteriorates and
the available bandwidth becomes gradually lower than the
required bitrate of the app, but the device remains connected
to the WiFi network. Eventually, the connection is lost for
several seconds before the device reconnects to the LTE
network. Perhaps more interestingly, Figure 5b shows the
mirroring behavior happens when the devices moves back to
the WiFi network.

Finally, the current policy provides a coarse-grained flow
management that loads all flows in the same interface.
Figure 5c depicts an experiment in scenario (3). Initially we
run the Youtube app on the device to play a video. After
a few seconds, a background app in the same device starts
a download task. The OS loads all connections in the WiFi
interface and as a result the throughput of YouTube fails to
satisfy the required bitrate due to bandwidth competition.

In summary, most apps are unaware of the actual network
performance, and passively follow the OS WiFi-if-available
policy, without exploiting the multiple interfaces on the device.

B. How Well Do Current Apps React to
Network Disruptions?

Given the prevalence of network instabilities in mobile
networks, mobile apps are expected to be able to handle them
to ensure good user experience. We next conduct experiments
to examine how existing apps react to network disruptions.
To emulate a network disruption, we set the device to connect
to the WiFi AP first, and turn off both interfaces in the middle
of data transmission to incur a network disruption lasting
for 3/5/10 seconds before letting it connect to LTE. Table I
summarizes the app reaction to such disruptions.

The results reveal a gloomy picture, that in practice most
current apps fail to effectively handle network disruptions,
which lead to poor user experience. First, we find that many
mobile apps, e.g., OperaMini and BBC News, do not han-
dle network disruptions at all. For example, it is surprising
that Opera, a mature browser, fails to reload a web page
when we quickly switch the device from a WiFi network

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

218 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

TABLE I

BEHAVIOR OF POPULAR MOBILE APPS UNDER NETWORK DISRUPTIONS

Fig. 5. Drawbacks of the WiFi-if-available interface selection policy. (a) Move from WiFi to LTE. (b) Move back from LTE to WiFi. (c) Bandwidth
competition. (d) Latency between Android framework and underlying networks.

to a cellular network. In this case, the page loading gets
stuck when the disruption happens. Second, some apps are
only able to tolerate very short disruptions but are not
robust against longer disruptions. For example, we find that
JustTalk fails to resume data loading when it suffers from
a network disruption longer than 3 seconds. Finally, inter-
estingly we observe that different tasks performed by the
same app may tolerate disruptions differently. For exam-
ple, the file moving operation in Dropbox cannot resume
from any network disruptions while its background file
sync operation retries to re-establish connections after a few
seconds.

Moreover, although some apps are able to resume connec-
tions from network disruptions, their reaction to connectivity
recovery of the underlying network is too slow, which also
causes poor user experience. When we set the disruption
time to 3/5/10 seconds, we observed that the recovery time
between the disconnection and the reconnection is much
longer than the disruption time. For example, YouTube takes
about 8.6 seconds to resume the playback from a 3-second
disruption. This indicates that the apps implement some slow
recovery schemes to handle disruptions.

In summary, most apps fail to correctly and efficiently
handle network disruptions caused by network switch.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: WIRELESS NETWORK INSTABILITIES IN THE WILD 219

C. The Root Causes for the Status Quo

We argue there are three key reasons that have contributed
to the status quo, that few of today’s popular apps handle
network disruptions or exploit multiple interfaces to improve
user experience.

Inheritance From the PC Era: The network stack and APIs
used in current mobile systems are mostly inherited from
the ones designed in wired environment (e.g., desktop/server),
which had stable access network performance and rare network
disruptions. Hence, there was no need for applications to
exploit multiple interfaces or handle network disruptions or for
the OS to provide support to applications to do so. Follow-
ing the same assumption, mobile apps today only passively
follow the decision of the OS, instead of actively select-
ing wireless networks to fit their own needs. For example,
Android maintains an active network inside the operating
system that is set to WiFi-if-available, and offers no support
for developers to change the network interface to fit their
needs, and thus at runtime all flows are loaded to the chosen
interface. In addition, as the basic Android APIs to manipulate
network connections, Socket and HttpURLConnection do not
provide support for transparent disruption handling, leaving
the burden of connectivity checking and TCP connection retry
to developers.

Current Solutions Are Ill-Suited for Handling
Network Disruptions: Android provides an API named
NetworkInfo.getState() for apps to check if the
network is available. However, through a measurement
study in Figure 5d, we find this method reacts slowly to
the underlying network switching or disruption. In the
measurement, we continuously send UDP packets when
we turn on the WiFi or LTE interface, while continuously
invoking getState(). Figure 5d shows there is an
increasing throughput at T 1, which means the underlying
network starts to detect packets at this time. Ideally
getState() should also detect it and notify the OS
that a network interface is available. In reality, however,
the getState() API suffers a noticeable delay (4 seconds
for WiFi and 3 seconds for LTE) when reacting to the
connectivity change of underlying network. We inspect the
source code and it comments that the added delay was for
potential instability of IPv6 routes. This explains why the few
apps that do deploy recovery schemes in Table I still have to
experience a much longer recovery time than the disruption
duration. The main reason lies in the insufficiency of current
network API.

On the other hand, a number of mobile network libraries
have been proposed recently to help developers to program
robust mobile apps, such as Volley [21], Retrofit [22], Http-
Client [23] and OkHttp [24]. However, we still observe that
a lot of apps fail to handle network disruptions because
they misuse or do not use those libraries. This is because
network libraries are often too complex and novice developers
often lack the knowledge or expertise to use the complex
mechanisms provided by such libraries (e.g., [25]).

An Outdated Assumption: In the past, it was almost
always the case that cellular data were expensive and WiFi

outperformed 2G, EDGE or 3G, which justified the sim-
ple WiFi-if-available interface selection policy in the OS.
For example, by default Android prefers to use WiFi if
available. Similarly, a number of previous works [14], [26]
suggested deferring transfers to WiFi and optimizing mobile
data. However, the assumption has largely diminished since
we entered the post 3G era, where the cellular network speed
has drastically increased and its cost reduced (e.g., the price
of 1MB mobile data dropped 100 times over the past 6 years).
Such a change of the old assumptions challenges the inherited
practice of simple network interface selection, as users may
expect various alternate policies that optimize app performance
than only optimizing the cost. Since WiFi is not always
cheaper and does not necessarily has higher bandwidth, now
WiFi is no longer superior to cellular interface for mobile
devices.

In summary, our measurement study covering a set of
popular apps has shown that most apps today neither handle
network disruptions nor exploit multiple interfaces to improve
their performance. Further, existing solutions are not suffi-
cient to fundamentally address the problem. In the follow-
ing, we propose our Janus system to provide direct support
inside the OS. Our goal is helping apps to transparently
choose the best interface available and meet their performance
requirements.

IV. DESIGN

A. Design Goals

The main objective of Janus is to build a framework
that intelligently selects a proper wireless interface for apps
according to the app performance requirement and current link
condition. As such, the design of Janus needs to satisfy the
following criteria.

Intelligent Interface Selection to Meet App Performance
Requirement: The framework must meet three requirements:
(1) Flexibility – it should be able to satisfy the performance
requirement of various app types; (2) Adaptive – it should be
adaptive to the dynamic network conditions; (3) Fine-grained
interface selection – the selection should be performed on
a per-app basis instead of per-user or per-device. The flows
of different apps should be allowed to use different network
interfaces to achieve suitable performance.

Compatibility: The framework must be compatible with
the existing APIs. It should be convenient for developers to
migrate their existing apps to the framework, and ideally it
does not require modifying the app source code, the server
side or the network infrastructure (e.g., the base station).

Seamless and Efficient Disruption Handling: The frame-
work must seamlessly resume from network disruptions with
little programming effort from the developers and without too
much extra overhead. Moreover, since existing Android frame-
work incurs high latency during network interface switching
(as shown in Figure 5d), Janus needs to find a more efficient
way to enable fast resume.

Energy Efficient Request Management: In case of waste-
ful and costly energy consumption under long disruptions,
the framework should provide several advantages: 1) it helps

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

220 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

to avoid the inefficiency problem caused by misusing power
control APIs; 2) it reduces the overhead of handling network
disruptions, e.g., connectivity can be probed in a single frame-
work instead of each app; and 3) it allows data transfers from
different processes to be clustered, improving the opportunity
of the device turning off the radio.

B. Design Options

Next we discuss the design options and our considerations
leading to the design of Janus.

App Layer vs. OS Layer: We design Janus as an OS layer
solution to meet the two design criteria. First, according to
our third design goal, an OS layer solution is compatible with
existing apps and do not require modifying app source code.
Besides, a library is typically statically linked which incur
more memory overhead. In contrast, an OS-layer solution
integrating the same functionalities may reduce the system
overhead.

User-Dependent vs. User-Independent: We design Janus as
an user-dependent solution, i.e., allowing user customization,
out of two considerations. First, Janus should inform the user
when the system is using a metered network to improve app
performance and thus may involve additional cellular traffic.
Second, the app performance requirement is user-dependent,
even for the same app. For example, a user with a rich
data plan may prefer low latency in chatting apps and care
less about the mobile data usage. Janus provides a knob for
users to make customized configurations on app performance
requirements.

Principles of Handling Disruptions: A network disruption
can be short or long in duration. We define a transient network
disruption as an event where a device quickly switches from
one network to another and define a permanent network
disruption as an event where the device disconnects from
the previous network and there is no new network available
for a while. Janus transparently handles (1) transient network
disruptions for both foreground and background tasks; and (2)
permanent disruptions for background tasks. This is because
if a permanent disruption (e.g., network down) happens when
the app is in the foreground, it is impossible to quickly resume
from the disruption. The proper way to handle a foreground
permanent disruption is to build a failure notification to the
user.

C. System Architecture

We have designed the Janus framework following the design
goals. Figure 6 shows an overview of the Janus architecture.
At a high level, Janus runs as a system service that intelligently
selects a network interface for apps according to the real-time
link quality and the adaptation policy configured by the user
which describes the performance requirement of the app. Janus
accomplishes this by integrating four key modules: Adaptation
Policy, Link Selector, Request Manager and Request Handler.
Janus’s Adaptation Policy is designed for describing different
performance requirements of various apps and is configured,
for example when the app is first installed on the handset.
While an app is running, Link Selector chooses the best

Fig. 6. System Architecture.

interface for the app according to the specified adaptation
policy together with the underlying link quality. Requests from
apps are uniformly managed by Request Manager to both
satisfy different policies based on the device context, and
enable energy efficient scheduling. When processing apps’
requests, traffic are then loaded to the selected interface by
the Request Handler. The Request Handler creates a virtual
interface between apps and the underlying physical links.
Disruptions are handled under the virtual interface, so that they
become transparent to the apps. Currently we implemented
Janus on the Android operating system, but the techniques we
use can be easily migrated to other mobile platforms.

D. Adaptation Policies

Janus provides a knob (implemented in a simple GUI – see
§V) to allow a user to customize the performance preference,
in the form of an adaptation policy, on a per-app basis. The
design of adaptation policies follows the following principles:
(1) the adaptation policies should cover the performance of
various app types, e.g., real-time and delay-tolerant apps;
(2) the configuration of adaptation policies should be adaptive
to the state of the app. For example an app may require differ-
ent policies in foreground and background; (3) the adaptation
policies should be simple and easy-to-use for users.

Policy Types and Performance Levels: To cover various
apps, we design three types of adaptation policy: (1) Delay-
Sensitive (DS) policy, which optimizes the user-perceived
latency and is designed for real-time apps like Browser and
Skype; (2) Throughput-Sensitive (TS) policy, which needs
sufficient bandwidth for video apps like YouTube; (3) Cost-
Sensitive (CS) policy, which optimizes the data usage in
metered networks and is suitable for delay-tolerant apps.
Thereafter we denote policy (1) and (2) as real-time policy. For
each policy, we allow the user to manually set the performance
level. For simplicity, the performance level is designed as
several options, i.e., high, medium and low, instead of a
concrete value.

Common Settings: We also consider several common set-
tings for each policy: (1) the priority of the policy. Janus takes
the policy with higher priority into consideration first; (2) data

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: WIRELESS NETWORK INSTABILITIES IN THE WILD 221

Fig. 7. Interface selection in various network conditions. Case 1: WiFi
performance is higher than PR; Case 2: only LTE performance outperforms
PR; Case 3: both WiFi and LTE cannot fit PR.

restriction. Since some policies may incur additional cellular
data usage to optimize performance, we allow the user to set
a restriction on cellular network usage; (3) app state, e.g.,
background or foreground. A policy can be optionally applied
for the background or foreground traffic of the app. In light of
that most users do not possess “domain-knowledge” in tuning
the parameters, we set a default policy for each app based on
its type labeled by GooglePlay.

E. Link Selector

Interface Selection for Real-Time Apps: For Delay-tolerant
policies, Janus schedules app flows to be clustered and only
transferred via WiFi network. To perform selection for Real-
time policies, our basic idea is to load the flow to an interface
that best fits the performance (throughput/RTT) level. In par-
ticular, the selection is expected to satisfy the following prin-
ciples: (1) to save mobile traffic, the algorithm should prefer
to use WiFi interface if both interfaces satisfy the performance
level; (2) the selection process should not incur high latency
during a switch process; (3) the selection algorithm should
not be too sensitive to a temporary poor link quality because
interface switching may interrupt the ongoing connection. For
example, the WiFi interface may suffer from poor quality for a
short time if the device temporarily moves to a place with poor
signal strength. In this scenario, it is undesirable to terminate
an ongoing flow and switch to another interface.

To meet the first principle, we divide the WiFi-LTE perfor-
mance space into three regions or cases as shown in Figure 7.
In Case 1 where the WiFi performance is better than the
required value, we select WiFi for apps. In Case 2, the LTE
performance is higher than the requirement while the WiFi per-
formance is lower. In this case we select LTE. In Case 3 where
both WiFi and LTE performance cannot meet the required
value, we prefer to use the interface with higher performance
to improve the user experience.

In practice, if we turn on the backup interface at when
we need to switch a flow, the switching process inevitably
suffers 1-3 seconds hardware latency caused by turning on
the interface. One approach to avoid this latency is to keep
both interfaces on, but such a method may incur much energy
drain. To satisfy the second principle, we design a perfor-
mance threshold that is a slightly larger than the performance

TABLE II

DETAILS OF THE INTERFACE SELECTION: CONDITIONS THAT TRIGGER
THE SWITCH FROM THE CURRENT INTERFACE TO THE BACKUP

INTERFACE. T hb: PERFORMANCE THRESHOLD; T ht : TIME

THRESHOLD; TW : WIFI PERFORMANCE; TL :
LTE PERFORMANCE

requirement as (1 + β)*required_performance. To reduce the
switch latency, during a switching process we turn on the
backup interface if the performance of current interface is
below Thb to prepare for the interface switching.

To follow the third principle, we propose a time threshold
Tht to avoid the extra overhead caused by frequent interface
switches. For the current interface in use, if its throughput is
below Thb and cannot satisfy the performance requirement,
we do not immediately switch to the backup interface. If the
current interface still cannot satisfy the performance after Tht
seconds, and the backup interface is available, we force the
flow to switch to the backup interface.

Table II describes the conditions in which we switch flows
from the current interface to the backup interface in each case.
Thb and Tht are the two thresholds used to reduce switch
latency and control the switch frequency. T is the time when
the throughput of current interface is below Thb. TW and
TL are the performance of WiFi and LTE respectively. For
example, if the device is currently in case 1 and using the
WiFi interface, Janus then decides to use the LTE interface
if the WiFi performance decreases below Thb for more than
Tht seconds while the LTE performance is higher than the
required value.

Monitoring Network State and Performance: We design a
network monitor module to monitor the state and performances
of underlying networks. In practice, calling Android libraries
to extract the network state takes a few seconds to detect the
network state change as shown in Figure 5. To reduce the
monitoring delay, we leverage Netlink [27] to design a native
listener to bypass the framework and watch out for the network
state change in the kernel space.

We monitor the cellular performance following the methods
in [18], [28], and [29] that leverage signal strength to estimate
the cellular performance. The module actively probes the WiFi
throughput once every 30 seconds to record the performance.

F. Request Manager

In this section, we describe how Janus’s Request Manager
buffers and schedule requests to efficiently satisfy different

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

222 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

policies according to the monitored context. The Request Man-
ager module has four components: Context Monitor, Policy
Adaptor, Adaptive Scheduler and Response Cache.

1) Context Monitor: At runtime, the Context Monitor mon-
itors contexts from the underlying system and network inter-
face. In particular, three kinds of context are monitored:

Battery state: We monitor the current battery capacity
of the device to decide if the device is in low power state.
On Android, the information of battery is exposed to the
software stack via a Hardware Abstraction Layer (HAL). The
HAL works as a middle-ware between upper-layer Android
libraries and lower-layer drivers. Although we can invoke Java
APIs from the Android libraries to read the information, here
we choose to bypass the HAL to reduce the overhead. Like
other systems based on the Linux kernel, Android stores the
data exposed by the underlying drivers into a set of files stores
the data exposed by the underlying drivers into a set of files
in the directory /sys/class. Hence we design an adaptor
thread to periodically read these files to get the battery level.

Connectivity: We monitor if the device (1) is connected to
WiFi, (2) is connected to cellular networks, or (3) the network
is unavailable. In practice, invoking Android libraries to extract
the connectivity info requires the developers to write their own
listener to monitor the broadcast and this monitoring process
typically takes few seconds. To reduce the overhead, we design
a native listener to watch on the network interface change.

App property: We monitor if the process runs as a
foreground process. Apps on Android use the Activity
class [30] to manipulate their UI. The state of Activity is
managed by Android’s software stack. When an app gets the
instance of Janus, our framework records the package name
of the app. To get the app’s state at runtime, we leverage the
ActivityManager class [31] to get the Activity running
on the top. An app is running in foreground if its package
name is the same to the top one.

2) Policy Adaptor: Requests from client libraries are
first pre-processed by the Policy Adaptor. Note that in
Section IV-D we provide three types of user-defined poli-
cies: delay-sensitive (DS), throughput-sensitive (TS) and cost-
sensitive (CS). The basic idea of satisfying different policies
is: (1) send requests with DS policy as soon as possible; (2) for
requests that belong to TS, send them immediately in essential
cases to guarantee user experiences, and otherwise defer the
data transfers to ensure efficiency; (3) defer requests with CS
upon an available WiFi connection. Specifically, the Policy
Adaptor makes different decisions on each request according
to the monitored context. Table III summarizes the policies
with corresponding actions in different cases.

3) Adaptive Scheduler: The Adaptive Scheduler maintains
two queues for different performance goals. The first queue,
Immediate Queue (I_Queue), is designed to store real-time
requests that have higher priority and should be processed as
soon as possible. Another queue, Delayed Queue (D_Queue),
is used to cache delay-tolerant requests with lower priority.

The Adaptive Scheduler sets a scheduled time for each
request added to D_Queue. The scheduled time is the time
when the request should be finally processed by Request Han-
dler. All requests in D_Queue are scheduled to be clustered,

Algorithm 1 Request Scheduling Process
Inputs: D, d, di, conditioni

Outputs: si

1: /* Let D be the time when the most recent request that
was processed, and d be the next scheduled time */

2: if conditioni is not satisfied then
3: Set si = unpredictable
4: return si

5: end if
6: if D + T < di then
7: Set D = di, d = di, si = di

8: return si

9: end if
10: if di > d then
11: Set si = d
12: return si

13: else
14: Set all s in D_Queue to di

15: Set si = di

16: return si

17: end if

reducing the network activities and improving the odds of the
device turning off the radio.

Let S = {s1, s2, . . . , sn} denotes a transmission schedule
that transmits request i at time si. When i is transmitted at
time si, the radio transitions to the high power state, then
transmits i instantaneously, and remains in the high power
state for T additional seconds. Here T is the tail time. The
request adaptor seeks to find a feasible transmission schedule
S that minimizes time in high power state. In the scheduler we
use the an intuitive but effective idea: each request is deferred
until its deadline, unless it arrives within T seconds of the
most recent scheduled time when a request is processed.

Algorithm 1 shows how we set the scheduled time for
each new request before adding it to D_Queue. Let D be the
time when the most recent request was transmitted to Request
Handler for processing, and let d be the next scheduled time
when requests will be transmitted. conditioni is the necessary
condition for request i. i can not be scheduled and si is set
to unpredictable if conditioni is not satisfied. For example,
requests are not scheduled if the connectivity is unavailable.
If the arrival time is close to D within a tail time, we set
si = di, and send the request to Request Handler right now
(line 6-8). If we find di > d, indicating that the deadline is
later than all requests in D_Queue, we set si = d and let ri

to be processed together with all other requests (line 10-12).
Otherwise, ri should be processed earlier than other requests.
Hence we set the scheduled time of all requests to di (line
14-16). Every time we send a request to the Request Handler,
D is updated.

4) Response Cache: The Response Cache is utilized to
cache response data for the requests that have been processed.
The cache helps to reduce traffic and response time when
multiple redundant requests are issued. The on-disk cache is
maintained with an LRU (Least-Recently-Used) scheme, and

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: WIRELESS NETWORK INSTABILITIES IN THE WILD 223

TABLE III

PRE-PROCESSING REQUESTS: REQUESTS ARE DELAYED OR PERFORMED IMMEDIATELY ACCORDING TO THE POLICY AND CONTEXTS

we use the If-Modified-Since field in HTTP header to
check if a response is expired.

G. Request Handler

The Request Handler is responsible for (1) loading per-
app network traffic in a selected interface and (2) enabling
transparent and fast handling network disruptions for apps.

Masking Network Disruptions for Apps: Typically, apps
manipulate network connections via network APIs such as
Socket and HttpURLConnection. When a network dis-
ruption occurs, these APIs throw an exception to the devel-
opers and expect apps to handle disruption by themselves.
To make the disruption recovery transparent and compatible
with upper apps, we design a virtual interface between apps
and underlying network interfaces. In this way, apps are trans-
parently connected to the virtual interface, and thus network
disruptions from physical interfaces are not thrown to apps
directly. Instead, recovery operations are performed under the
virtual interface. In particular, we leverage iptables (a pop-
ular user space Linux firewall) and redsock (a transparent
sockets redirector on Android [32]) on Android to change the
destination IP and port to redirect app flows to the virtual
interface.

Recovery for Network Disruptions: Janus’s Request Handler
includes an interface switcher component which is designed
to switch flows according to the decision made by Link
Selector. To handle a transient network disruption, Janus
quickly retries to connect to the server after the termination
of current connections. If it is still unable to connect to the
server after retrying for several times, the device may suffer
a permanent disruption. To handle a permanent disruption
(e.g., network down), Janus stores the state of ongoing flows
and releases the WiFi/CPU wakelock, which is an energy-
consuming mechanism that keeps the radio on until it is
released [33]. We extend the AlarmClock class [34] in Android
libraries to set a hardware timer to wake up the device and
resume transmission if the network is available again.

To reduce the traffic overhead during the switch, Janus’s
interface switcher leverages three observations: (1) HTTP is
the dominant mobile protocol, and HTTP-based video traf-
fic accounts for more than 75% of the total bytes carried
on mobile networks [35]; (2) most web servers today have
adopt HTTP progressive download [36]. Through this scheme,
Request Handler requests data in byte ranges instead of re-
transferring data from the start when resuming an interrupted
connection; (3) for most HTTP-based streaming and browsing

Fig. 8. Janus GUI. (a) YouTube. (b) Dropbox.

apps, the content within a session is downloaded using mul-
tiple HTTP GET requests over time [12]. Therefore, when
Janus switches the interface, Request Handler simply performs
subsequent HTTP-GET requests over the new interface.

V. IMPLEMENTATION

We implement Janus framework as a system level service
on LG Nexus 6 running Android 6.0 with a 2.0 GHz octa-
core 64-bit CPU and 3GB RAM. Janus is implemented
in around 3500 lines of Java code. In our deployment,
we map the options in an adaptation policy to concrete
values. Specifically in the Throughput-sensitive policy, we map
the high/medium/low performance levels to 1/3/5 Mbps
throughput, respectively. We choose these values because
they are the recommended bitrate for playing video with
low/standard/high resolution [37] in typical mobile streaming
apps (e.g., YouTube). In the Delay-sensitive policy, we map
the high/medium/low levels to 200/400/600 ms latency, respec-
tively following the performance level of Delay-sensitive apps
suggested by [38]. In the Cost-sensitive policy, we interpret
the high level as only transferring data via WiFi to optimize
cellular usage, and medium/low levels as deferring transfers
to WiFi but within the deadline of 1 day/hour. We set the
bandwidth threshold β = 0.2 and timer Tht = 3s in our
current implementation. For the request schedule algorithm,
we set T as 1 second.

Figure 8 shows Janus’s GUI for letting the user config-
ure adaptation policies for individual apps. In the examples,
the user set a Throughput-sensitive policy with the medium
performance level and high priority for the foreground traffic
of YouTube, and a Cost-sensitive policy for Dropbox to
synchronize its background traffic if WiFi is available.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

224 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

Fig. 9. Throughput.

Fig. 10. CPU and RAM.

VI. EVALUATION

A. Microbenchmark

We first use a microbenchmark to evaluate the basic per-
formance of Janus as an integrated system. We leverage
HttpURLConnection (HUC) which is one of the basic network
API on Android to implement a toy app that performs a simple
function to send HTTP requests and load a web page. We run
the toy app with and without Janus. For comparison, we
implement the same functionality using three popular network
libraries on Android: Volley [21], OkHttp [24] and Http-
Client [23]. We kill unrelated apps and background process
on the device to avoid interference. We use a Monsoon
PowerMonitor [39] to measure the energy consumption.

Network Performance and Overhead: We compare the
throughput, CPU and RAM usage of different implementations
in loading pages of different sizes. For each implementation,
we run each test 5 times and calculate the average result.
The results are shown in Figure 9 and 10. As the basic
network API, HUC gains the highest throughput and the lowest
CPU/RAM overhead for different request sizes. However,
Janus’s throughput is higher than that of the other three
libraries and is very close to that of HUC. The average CPU
and RAM usage of each approach are similar except Volley.
Interestingly, we find that Volley incurs much more RAM
overhead than other implementations which we suspect is due
to problems in its internal implementation.

Effectiveness on Handling Network Disruptions: Next,
we examine the ability and efficiency of handling network
disruptions. We follow the same methodology in Section 3 to
inject a network disruption in the middle of data trans-
mission. Since HUC is the basic API without disruption
handling function, we only evaluate the network disruption
processing of Janus and other three approaches. As shown
in Figure 11, we find that Janus reduces the page load time
(including both data transfers and disruption recovery) by up to
37.18/34.93/30.56% for a 3/5/10s transient network disruption
as compared to other approaches. We find these three libraries
periodically check the connectivity to resume the connection,

Fig. 11. Load time.

Fig. 12. Energy.

Fig. 13. Janus meets the performance requirement of video streaming with
different bitrates. (a) Achieved bitrate of videos. (b) Number of stalls.

and the recovery time significantly depends on the checking
interval. The benefit of Janus comes from asynchronously
monitoring connectivity and quickly reacting to underlying
network state.

Energy Efficiency Under Disruptions: To evaluate how
the Request Manager helps reduce energy through flexible
request scheduling, we compare the energy consumption of
different network libraries under a short (3s) and a long term
(60s) disruption. Again, since HUC is unable to recover from
network disruptions, we omit it in this experiment. The result
is shown in Figure 12. Janus helps to reduce more energy
consumption than other three libraries for a 60s disruption
(up to 47.3%) than a 3s disruption (up to 30.9%). The reason
is that Janus controls the device to remain in low power
state until a network interface is available, thus it significantly
reduces energy consumption of the device in standby state.
We manually inspect the source code of Volley, OkHttp and
HttpClient and confirm that they all adopt the naive retry
solution when no network is available, wasting a lot of energy.

B. Experience With Real-World Apps

Handling Network Disruptions: We replay the experiment
conducted in Section III to execute specific network tasks in
real apps and examine how Janus helps to effectively handle
network disruptions. We enable Janus for apps in Table I
in the dashboard as shown in Figure 8 and set a proper
policy for each app according to their types. First, we find

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: WIRELESS NETWORK INSTABILITIES IN THE WILD 225

Fig. 14. Janus properly selects wireless interface to reduce latency of the
VoIP app. (a) VoIP. (b) Latency over time.

that with Janus, the apps in Table I that do not handle
network disruptions (e.g., BBC News) are tolerant to network
disruptions. Transient disruptions and background permanent
disruptions are transparently handled by Janus and do not
interrupt user interactions. Foreground permanent disruptions
are left to apps since they should be reported to users.

Second, for the apps that are able to resume from disruptions
themselves as shown in Table I, Janus reduces their recovery
time. To evaluate the efficiency improvement on handling
network disruptions, we plot their disruption recovery time
(including data transfers and disruption time) with and without
Janus. As shown in Table IV, Janus reduces the recovery
time of Google Play Store, 500px and TouchChina by up to
38.75%, 51.50%, and 40.05%, respectively. Results of other
apps are similar and hence omitted. The improvements come
from that Janus monitors the recovery of underlying networks
and immediately resumes connections once the network is
available again.

Flexibility: To demonstrate the flexibility of Janus, we run
YouTube to play videos in different bitrate under a WiFi AP
with weak signal strength. Figure 13a shows the throughput of
playing video at different resolutions. As the required bitrate
increases, Janus loads the streaming flow in a proper interface
that meets the performance requirement, while the original
mechanism fails to flexibly select a right interface to satisfy
performance requirements. Figure 13b plots the number of
stalls during the playback process. Janus reduces the number
of stalls by 85.7% as it switches to LTE when the WiFi
throughput is insufficient.

Adaptation to Dynamic Network Conditions: We next eval-
uate how Janus adapts to the dynamic network conditions. We
run a VoIP app (JusTalk) and a live streaming app (YouTube)
on the device, and walk from a WiFi network to a LTE
network. As shown in Figure 14, the original policy only
switches to use LTE when the WiFi connectivity is totally
lost. As a result, the VoIP is interrupted for about 6 seconds.
In contrast, Janus quickly switches to the better interface when
the WiFi performance decreases and satisfy basic performance
requirements at mobility. Similarly, since the original policy
statically selects WiFi, the bitrate requirement of the streaming
apps cannot be satisfied when the WiFi throughput decreases
as we leave the WiFi AP, as shown in Figure 15. Figure
15a demonstrates the throughput variation as we move in a
30-seconds interval. At the middle of the process, the through-
put goes below the performance requirement, incurring poten-
tial buffering events (more clearly shown in Figure 15b). Janus,
on the other hand, can dynamically select the best interface

TABLE IV

THE RECOVERY TIME OF REAL-WORLD APPS UNDER
DISRUPTION TIME 3s/5s/10s

Fig. 15. Janus selects the best interface to sustain good user experience
for live streaming. (a) Throughput during streaming. (b) Re-buffer during
streaming.

based on the real-time network conditions. In this example,
the device with Janus quickly switches to LTE from WiFi
as soon as the WiFi throughput is lower than performance
requirement. Therefore, Janus is able to avoid re-buffering.

We extend the experiment to one minute, change the
demanded video resolution from 360p to 720p, and measure
the number of stalls experienced in one minute. As shown
in Table VI, Janus effectively reduces the number of stalls
during live streaming (e.g., 94.7% reduction when demanded
video resolution is 720p).

Fine-Grained Flow Control: We then run YouTube for live
streaming, together with a file download app on the same
device. The download app starts a download task in the
middle of playing video. First, we set the live app to have
higher priority than the download app, and only allow loading
streaming flows in the WiFi interface. The app throughput are
shown in Figure 16a. In this case, Janus limits the download
throughput to sustain the performance requirement for the
live app. Then we set the download app to have higher
priority than the live app and allow the live app to use LTE
interface. Figure 16b shows when the download task starts,
Janus switches the streaming flow to LTE to avoid bandwidth
competition. Thus, Janus’s fine-grained flow management is
able to intelligently load flows in different interfaces to achieve
good application performance.

C. Experiments in Outdoor Environments

Guaranteeing User Experiences in the Wild: We finally
evaluate the effectiveness of Janus in outdoor environments.
We set the Delay-sensitive policy for a VoIP app and the
Throughput-sensitive policy for a streaming app. We run the
apps in outdoor environments while recording the through-
put/RTT in every second to generate 3194 VoIP runs and

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

226 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

TABLE V

JANUS IMPROVES THE USER EXPERIENCE FOR VOIP AND STREAMING APPS IN OUTDOOR ENVIRONMENTS

Fig. 16. Flows of different apps are assigned to different interfaces to satisfy
performance requirments. (a) Cellular not allowed. (b) Cellular allowed.

TABLE VI

STALLS DURING A ONE-MINUTE LIVE STREAMING

7210 streaming samples. We replay the traces under the orig-
inal WiFi-if-available policy and Janus, respectively. Table V
shows the results. For the VoIP app we use mean-opinion-
score (MOS) [40] to evaluate the quality of voice talk and
consider the quality is good if MOS is larger than 3 [41].
Since Janus is adaptive to the dynamic network condition at
mobility and quickly switches to the best interface during a
voice session, it reduces the average end-to-end latency by
33% while increasing the time with good quality by 31%.
For the streaming app, each sample lasts for about 5 minutes.
Janus improves the user experience by reducing the average
number of stalls per sample by 2.9× and the rebuffering time
by 3.3×.

Reducing Traffic Size and Energy Consumption: While
Janus leverages multiple network interfaces on the device to
obtain good performance, the adaptation policy also enables
some users to make data restrict plan and reduce traffic size.
Moreoever, this also improves energy efficiency. To evaluate
Janus’s impact on traffic and energy efficiency when apps are
running on users’ phones, we deploy the original and Janus
version of a Gallery app and a Notebook app on two Galaxy
Nexus smartphones, respectively. Both apps are assigned cost-
sensitive policy and has data restriction so there requests are
treated as of low priority. We hold the two phones and walk
around the campus. During the move, we concurrently perform
the same operations (e.g., reading social contents and loading
photos) on two phones. We walk for about one hour and log
down the network state, transferred data size of each app, and
the energy consumption on both devices.

Figure 17a and Figure 17b demonstrate the data transfer pro-
file on each device, respectively. The figures depict our track

on network dimension: our devices were initially connected to
a WiFi network, and then moved to a place where only cellular
connectivity is available. Finally, they were moved to another
area and connected to a WiFi network for data transmission.
Janus schedules data transfers based on the adaptation policy
defined in each app. When no WiFi network is available, piece-
meal data transfers of both apps are then delayed to reduce
traffic size (and energy consumption). The total traffic usage
and energy consumption in each device are shown in Figure
17c. We observe that Janus reduces 26.4% data traffic since
Janus leverages the range query to handle network disruptions
and avoids redundant data re-transfer. Moreover, Janus reduces
energy consumption by 16.3% in total. The benefit comes
from the well-scheduled and batched processing of network
requests. Existing methods require apps to repeatedly check if
there is available network, which incurs high energy overhead.
In contrast, Janus forces the device to stay in low power state
when there are no network operations or the operations have
low priority based on the device context.

VII. DISCUSSION

Discussions of MPTCP: Multi-Path TCP (MPTCP) [42] is
a new transport-layer protocol which leverages multiple net-
work interfaces to transfer data simultaneously. While MPTCP
seems a natural solution to handle network instabilities since
it can use another interface as backup when one interface
is down. However, deploying MPTCP in reality faces two
challenges: First, MPTCP requires modifications on both client
and server side. While updating the client side is generally
feasible, modifying the server side (especially involving the
OS kernel) poses overhead that often cannot be accepted by
service operators (We talked to some service operators and
confirmed this argument). One may leverages Virtual-Machine
(VM) based techniques to serve as a front-end MPTCP proxy
and avoid updating the original servers. However, we observe
a number of apps on the Android App Market are out of
management, and so they may not be updated in time. Second,
according to a measurement study [43], 6% of access networks
could remove unknown TCP options field and thus prevent
the forwarding of MPTCP packets. On the other hand, Janus
is completely based on standard TCP, hence it is likely to be
compatible with all access networks.

Compatibility With QUIC: The QUIC protocol [44], [45]
uses a 64-bit Connection ID to identify each connection and
enables NAT rebinding and connection migration. On mobile
devices, when the client’s IP and port number change,
the server can re-establish the connection on another interface.
Thus, the idea of Janus can be easily extended into the context
of QUIC, which we leave as our future work.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: WIRELESS NETWORK INSTABILITIES IN THE WILD 227

Fig. 17. Experiments in the wild: Janus flexibly adapts to user-defined policies to reduce traffic size and efficiently saves energy. (a) Data profile of original
apps. (b) Data profile of Janus-based apps. (c) Overall traffic and energy profiling.

Apps QoE Metrics: The proliferation of applications brings
various performance requirements. As stated previously, some
apps require high bandwidth (e.g., video streaming) while
some require low latency (e.g., VoIP). The Quality of Experi-
ence (QoE) is often used to evaluate users’ satisfaction on
apps performance. However, QoE can be diverse or even
contradictory across users. In the context of video streaming,
for example, some people prefer less re-buffering while others
may prefer higher video resolution. There are plenty of works
discussing the choice of QoE metric for video streaming
[46]–[50]. Janus provides the system support for various
applications, so that these applications can flexibly choose
their own performance requirement (different QoE). In this
paper, we simply select the number of re-buffering as the
metric for video streaming while MOS value for VoIP, mainly
to show that Janus can effectively satisfy apps performance
requirements. Evaluating the system with other QoE metrics
is beyond the goal of this paper.

Disruption Handling on iOS System: Our measurements
in §III on apps’ ability to handle network instabilities are
conducted based on Android platform. To test whether the
same issue exists on iOS system, we conduct the same
experiment (with the same procedure in Table I) on iPhone 6 to
test if Siri [51] could tolerate network instabilities. However,
the result is also disappointing, in that when we manually
set a network disruption (time gap: 3/5/10s), Siri responded
to it very slowly and sometimes even failed to reconnect
(8s/failed/failed). Thus, our motivation can be extended to
both Android and iOS platform. And we envision that iOS
developers can fix this instability in the future, with similar
methodology proposed in this paper.

Deployment Issues of Janus: Deploying Janus requires that
the Android device to be rooted, because the original Android
framework does not support activating and utilizing WiFi and
cellular interfaces simultaneously. To this end, we need to first
root the device. Once it is rooted, users only need to install the
Janus framework (as an APK file), and do not need to modify
the server side. Besides, as demonstrated in Figure 9 and 10,
Janus incurs minimal runtime overhead.

VIII. RELATED WORK

Characterizing WiFi/Cellular Networks: Several prior works
measure the performance of WiFi and cellular networks. Bala-
subramanian et al. [26] measured the access and performance
of WiFi and 3G networks from moving vehicles in different
cities. Deng et al. [1] measured and compared WiFi and

cellular network performance on the same device at the same
time. Ding et al. [17] performed the first measurement study
of 3G and WiFi signal strength experienced by a large number
of smartphone users and quantified the energy impact of poor
signal strength on data transfers. In contrast, our measurement
study focuses on the instabilities of WiFi/cellular networks
experienced by the handsets.

Handling Network Disruptions: A few studies tried to
handle network disruptions from the network side. For exam-
ple, ATOM [12] offers seamless data transfer upon network
disruptions by adding an additional interface switching service
(ISS) in the radio access network (RAN). Moon et al. [11]
and Go et al. [13] propose a new delay-tolerant protocol as
an alternative solution of TCP to handle network disruptions
in the transport layer. Since existing TCP/IP stack is clumsy
at addressing network disruptions, several studies proposed
to extend the current network stack to handle network dis-
ruptions. Besides MPTCP, TCP Migrate [52] also adds a
transport-level flow identifying token to resume a TCP flow
upon network disruption. Cedos [11] is proposed as a new
transport-layer protocol that focuses on handling network
disruptions and high delays for mobile apps. However, all these
approaches need to modify the current TCP/IP stack and none
of them provide the flexibility to express various app require-
ments. In contrast, Janus is compatible with existing protocols
(e.g., TCP and HTTP) while providing a knob for configuring
various performance requirements.

Interface Selection: Several studies [53]–[55] proposed
algorithms for interface selection but only solved a part of
the problem since they did not provide a practical solution to
handle network disruptions. A few studies [14], [26] focused
on scheduling user data across WiFi and cellular interfaces,
but were limited to delay-tolerant traffic and did not provide
support for real-time apps. In contrast, Janus enables efficient
interface selection and can switch network interface quickly,
which can support real-time requests.

Utilizing Multiple Interfaces: MPTCP, SCTP [56] and
bandwidth aggregation [57] also exploit multiple network
interfaces on mobile devices to overcome potential network
disruption. Although these are effective and valuable efforts
towards remedying network disruption issue, all of the three
techniques proposed above require to modify both the client
and server side. Besides, some techniques like SCTP require
modification on network devices [44] to forward packets with
unconventional format, which can expose difficulties in real
deployment. Janus does not need to modify the server side, and

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

228 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

are also completely compatible with existing network stack,
thus making it readily deployable.

Context-Aware Apps: Several projects studied monitoring
app behavior according to the context of the devices. In par-
ticular, the studies reported in [58]–[60] introduce app-specific
adaptation engines. These studies inspire us to design Janus to
accommodate the usage of different apps, and take the device
context into consideration to provide fine-grained QoS based
on user experiences.

IX. CONCLUSION

In this paper, we have shown that network disuptions
and signal strength fluctuations remain pravelent in today’s
WiFi/cellular data networks, yet even some of the most popular
mobile apps today do not implement any disruption-tolerant
mechanisms. We propose Janus, an intelligent interface man-
agement framework in the OS that exploits the multiple
interfaces to transparently handle network disruptions and
meet apps’ performance requirement. Our extensive evalua-
tion using real-world apps showed that Janus can transpar-
ently and efficiently handle network disruptions and improve
app performance, e.g., reducing the number of video stalls of
streaming apps by 31% and voice latency by 2.9× compared to
Android’s interface selection mechanism. Moreover, Janus can
also reduce traffic size by 26.4% and energy consumption by
16.3%, through flexibly configured user-defined policies and
device context. The source code of Janus is open-sourced and
we envision this framework can facilitate robust and efficient
app development for the communities.

ACKNOWLEDGEMENT

The authors thank the editor Prof. E. Modiano and the
associate editor Dr. H. Seferoglu for their dedicated guidance.
The authors also thank the anonymous reviewers for their
valuable comments that make this paper better.

REFERENCES

[1] S. Deng, R. Netravali, A. Sivaraman, and H. Balakrishnan, “WiFi, LTE,
or both?: Measuring multi-homed wireless Internet performance,” in
Proc. Conf. Internet Meas. Conf., 2014, pp. 181–194.

[2] J. Huang et al., “An in-depth study of LTE: effect of network protocol
and application behavior on performance,” ACM SIGCOMM Comput.
Commun. Rev., vol. 43, no. 4, pp. 363–374, 2013.

[3] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, and N. Dai, “Furion: Engineering
high-quality immersive virtual reality on today’s mobile devices,” in
Proc. 23rd Int. Conf. Mobile Comput. Netw. (MobiCom), Snowbird, UT,
USA, 2017, pp. 409–421.

[4] L. Zhang, L. Sun, W. Wang, and J. Liu, “Unlocking the door to mobile
social VR: Architecture, experiments and challenges,” IEEE Netw.,
vol. 23, no. 1, pp. 160–165, Jan./Feb. 2018.

[5] P. Jain, J. Manweiler, and R. R. Choudhury, “Low bandwidth offload
for mobile AR,” in Proc. 12th Int. Conf. Emerg. Netw. Exp. Technol.,
2016, pp. 237–251.

[6] R. Shea, J. Liu, E. C.-H. Ngai, and Y. Cui, “Cloud gaming: Architecture
and performance,” IEEE Netw., vol. 27, no. 4, pp. 16–21, Jul./Aug. 2013.

[7] J. Jiang et al., “VIA: Improving Internet telephony call quality using
predictive relay selection,” in Proc. ACM SIGCOMM Conf., 2016,
pp. 286–299.

[8] C. Müller, S. Lederer, and C. Timmerer, “An evaluation of dynamic
adaptive streaming over HTTP in vehicular environments,” in Proc.
4th Workshop Mobile Video, 2012, pp. 37–42

[9] T. Stockhammer, “Dynamic adaptive streaming over HTTP: standards
and design principles,” in Proc. 2nd Annu. ACM Conf. Multimedia Syst.,
2011, pp. 133–144

[10] X. Chen et al., “Smartphone background activities in the wild: Origin,
energy drain, and optimization,” in Proc. 21st Annu. Int. Conf. Mobile
Comput. Netw., 2015, pp. 40–52.

[11] Y. Moon et al., “Practicalizing delay-tolerant mobile apps with cedos,”
in Proc. ACM MobiSys, 2015, pp. 419–433.

[12] R. Mahindra, H. Viswanathan, K. Sundaresan, M. Y. Arslan, and
S. Rangarajan, “A practical traffic management system for
integrated LTE-WiFi networks,” in Proc. ACM MobiSys, 2014,
pp. 189–200.

[13] Y. Go, Y. Moon, G. Nam, and K. Park, “A disruption-tolerant transmis-
sion protocol for practical mobile data offloading,” in Proc. 3rd ACM
Int. Workshop Mobile Opportunistic Netw., 2012, pp. 61–68.

[14] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong, “Mobile data offloading:
How much can WiFi deliver?” in Proc. 6th Int. Conf., 2010, p. 26.

[15] J. Huang et al., “A close examination of performance and power
characteristics of 4G LTE networks,” in Proc. ACM MobiSys, 2012,
pp. 225–238.

[16] Monthly Data Plan. Accessed: Aug. 1, 2016. [Online]. Available:
https://www.whistleout.com/CellPhones/Guides/The-Best-Unlimited-
Data-Plans-Around

[17] N. Ding et al., “Characterizing and modeling the impact of wireless sig-
nal strength on smartphone battery drain,” in Proc. ACM SIGMETRICS,
2013, pp. 29–40.

[18] A. Schulman et al., “Bartendr: A practical approach to energy-aware
cellular data scheduling,” in Proc. ACM MobiSys, 2010, pp. 85–96.

[19] Y. Li et al., “iCellular: Device-customized cellular network access on
commodity smartphones,” in Proc. NSDI, 2016, pp. 643–656.

[20] Googleplay. Accessed: Sep. 20, 2016. [Online]. Available: https://play.
google.com/store?hl=en

[21] Volley. Accessed: Sep. 20, 2016. [Online]. Available: http://
developer.android.com/training/volley/index.html

[22] Retrofit. Accessed: Sep. 20, 2016. [Online]. Available: http://square.
github.io/retrofit/

[23] HttpClient. Accessed: Sep. 20, 2016. [Online]. Available: https://hc.
apache.org/httpcomponents-client-ga/

[24] Okhttp. Accessed: Sep. 20, 2016. [Online]. Available: http://square.
github.io/okhttp/

[25] X. Jin, P. Huang, T. Xu, and Y. Zhou, “NChecker: Saving mobile app
developers from network disruptions,” in Proc. 11th Eur. Conf. Comput.
Syst., 2016, p. 22.

[26] A. Balasubramanian, R. Mahajan, and A. Venkataramani, “Augmenting
mobile 3G using WiFi,” in Proc. ACM MobiSys, 2010, pp. 209–222.

[27] Netlink. Accessed: Sep. 20, 2016. [Online]. Available:
http://man7.org/linux/man-pages/man7/netlink.7.html

[28] A. Rahmati and L. Zhong, “Context-for-wireless: Context-sensitive
energy-efficient wireless data transfer,” in Proc. ACM MobiSys, 2007,
pp. 165–178.

[29] Y. Cui et al., “Performance-aware energy optimization on mobile
devices in cellular network,” in Proc. IEEE INFOCOM, Apr./May 2014,
pp. 1123–1131.

[30] Activity. Accessed: Sep. 20, 2016. [Online]. Available:
http://developer.android.com/reference/android/app/Activity.html

[31] ActivityManager. Accessed: Sep. 20, 2016. [Online]. Available: http://
developer.android.com/reference/android/app/ActivityManager.html

[32] Redsock. Accessed: Sep. 20, 2016. [Online]. Available: http://darkk.
net.ru/redsocks/

[33] Wakelock. Accessed: Sep. 20, 2016. [Online]. Available: https://
developer.android.com/reference/android/net/wifi/WifiManager.
WifiLock.html

[34] Alarmclock. Accessed: Sep. 20, 2016. [Online]. Available:
http://www.android-doc.com/
reference/android/provider/AlarmClock.html

[35] (2012). Ericsson Traffic Report. [Online]. Available: http://tinyurl.
com/l4sg5td

[36] Nginx. Accessed: Sep. 20, 2016. [Online]. Available: https://www.nginx.
com/blog/smart-efficient-byte-range-caching-nginx/

[37] Recommended Video Bitrate. Accessed: May 15, 2017. [Online]. Avail-
able: https://support.google.com/youtube/answer/1722171?hl=en

[38] A. Arjona, C. Westphal, A. Ylä-Jääski, and M. Kristensson, “Towards
high quality VoIP in 3G networks—An empirical study,” in Proc. 4th
Adv. Int. Conf. Telecommun. (AICT), Jun. 2008, pp. 143–150.

[39] Monsoon PowerMonitor. Accessed: Sep. 20, 2016. [Online]. Available:
http://msoon.github.io/powermonitor/

[40] MOS. Accessed: Sep. 20, 2016. [Online]. Available: https://en.wikipedia.
org/wiki/Mean_opinion_score

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: WIRELESS NETWORK INSTABILITIES IN THE WILD 229

[41] A. Balasubramanian, R. Mahajan, A. Venkataramani, B. N. Levine, and
J. Zahorjan, “Interactive wiFi connectivity for moving vehicles,” ACM
SIGCOMM Comput. Commun. Rev., vol. 38, no. 4, pp. 427–438, 2008.

[42] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural
guidelines for multipath TCP development,” Internet Eng. Task Force
(IETF), Tech. Rep. RFC 6182, 2011.

[43] M. Honda et al., “Is it still possible to extend TCP?” in Proc. ACM
SIGCOMM Conf. Internet Meas. Conf., 2011, pp. 181–194.

[44] A. Langley et al., “The QUIC transport protocol: Design and Internet-
scale deployment,” in Proc. Conf. ACM Special Interest Group Data
Commun., 2017, pp. 183–196.

[45] Y. Cui, T. Li, C. Liu, X. Wang, and M. Kühlewind, “Innovating transport
with QUIC: Design approaches and research challenges,” IEEE Internet
Comput., vol. 21, no. 2, pp. 72–76, Mar./Apr. 2017.

[46] F. Dobrian et al., “Understanding the impact of video quality on user
engagement,” ACM SIGCOMM Comput. Commun. Rev., vol. 41, no. 4,
pp. 362–373, Aug. 2011.

[47] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with Pensieve,” in Proc. Conf. ACM Special Interest Group Data
Commun., 2017, pp. 197–210.

[48] Y. Sun et al., “CS2P: Improving video bitrate selection and adaptation
with data-driven throughput prediction,” in Proc. ACM SIGCOMM
Conf., 2016, pp. 272–285.

[49] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson,
“A buffer-based approach to rate adaptation: Evidence from a large video
streaming service,” ACM SIGCOMM Comput. Commun. Rev., vol. 44,
no. 4, pp. 187–198, 2015.

[50] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over HTTP,” ACM
SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 325–338, 2015.

[51] Apple Siri. Accessed: Sep. 20, 2016. [Online]. Available:
https://www.apple.com/ios/siri/

[52] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode, “Migratory TCP:
Connection migration for service continuity in the Internet,” in Proc.
22nd Int. Conf. Distrib. Comput. Syst., Jul. 2002, pp. 469–470.

[53] S. Deb, K. Nagaraj, and V. Srinivasan, “MOTA: Engineering an operator
agnostic mobile service,” in Proc. 17th Annu. Int. Conf. Mobile Comput.
Netw., 2011, pp. 133–144.

[54] P. Coucheney, C. Touati, and B. Gaujal, “Fair and efficient user-network
association algorithm for multi-technology wireless networks,” in Proc.
INFOCOM, Apr. 2009, pp. 2811–2815.

[55] S. Deng, A. Sivaraman, and H. Balakrishnan, “All your network are
belong to us: A transport framework for mobile network selection,” in
Proc. 15th Workshop Mobile Comput. Syst. Appl., 2014, p. 19.

[56] J. Wu, B. Cheng, C. Yuen, Y. Shang, and J. Chen, “Distortion-aware
concurrent multipath transfer for mobile video streaming in heteroge-
neous wireless networks,” IEEE Trans. Mobile Comput., vol. 14, no. 4,
pp. 688–701, Apr. 2015.

[57] J. Wu, B. Cheng, M. Wang, and J. Chen, “Energy-efficient bandwidth
aggregation for delay-constrained video over heterogeneous wireless
networks,” IEEE J. Sel. Areas Commun., vol. 35, no. 1, pp. 30–49,
Jan. 2017.

[58] S. Elmalaki, L. Wanner, and M. Srivastava, “CAreDroid: Adaptation
framework for Android context-aware applications,” in Proc. 21st Annu.
Int. Conf. Mobile Comput. Netw., 2015, pp. 386–399.

[59] X. Zhao, Y. Guo, Q. Feng, and X. Chen, “A system context-aware
approach for battery lifetime prediction in smart phones,” in Proc. ACM
Symp. Appl. Comput., 2011, pp. 641–646.

[60] A. Beach et al., “Fusing mobile, sensor, and social data to fully enable
context-aware computing,” in Proc. 11th Workshop Mobile Comput. Syst.
Appl., 2010, pp. 60–65.

Yong Cui received the B.E. and Ph.D. degrees in
computer science and engineering from Tsinghua
University, Beijing, China, in 1999 and 2004,
respectively. He is currently a Full Professor with
Tsinghua University and the Co-Chair of IETF IPv6
Transition WG Software. He has published more
than 100 papers in refereed journals and conferences,
holds more than 40 patents, and authored three Inter-
net standard documents, including RFC 7040 and
RFC 5565, for his proposal on IPv6 transition tech-
nologies. His major research interests include mobile

wireless Internet and computer network architecture.

Yimin Jiang received the B.E. degree in information
engineering from Nanjing University in 2016. He
is currently pursuing the Ph.D. student with the
Department of Computer Science and Technology,
Tsinghua University, advised by Prof. Y. Cui. His
research interests include mobile systems, machine
learning systems, and RDMA.

Zeqi Lai is currently pursuing the Ph.D. degree
with the Department of Computer Science and
Technology, Tsinghua University. His supervisor is
Prof. Y. Cui. His research interests include cloud
computing and cloud storage.

Xiaomeng Chen received the B.E. degree in electri-
cal engineering from the University of Science and
Technology of China in 2012, and the Ph.D. degree
from Purdue University in 2017. She is currently at
Apple Inc., as an iOS Power Engineer. Her research
interests include mobile system, wireless, and IOT
network.

Y. Charlie Hu (F’16) received the Ph.D. degree in
computer science from Harvard University in 1997.
From 1997 to 2001, he was a Research Scientist
at Rice University. He is currently the Michael and
Katherine Birck Professor of electrical and com-
puter engineering at Purdue University. His research
interests include mobile systems, operating systems,
distributed systems, and computer networks. He has
published over 170 papers in these areas. He has
served as a General Co-Chair of ACM SIGCOMM
2014 and the Program Committee Co-Chair of ACM

MobiCom 2016 and ACM SIGOPS EuroSys 2018. He is an ACM Distin-
guished Scientist. He was a recipient of the Honda Initiation Grant Award,
the NSF CAREER Award, and the EuroSys Best Student Paper Award in 2012.

Kun Tan received the B.E., M.E., and Ph.D. degrees
in computer science and engineering from Tsinghua
University, Beijing, China, in 1997, 1999, and 2002,
respectively. He joined Microsoft Research Asia,
Beijing, after his graduation. He is currently a Vice
President of the Central Software Institute and the
Director and the Chief Architect at the Cloud Net-
working Lab, Huawei Technologies Co., Ltd. He
has filed over 30 pending patents and seven granted
patents after he joined Microsoft Research Asia.
His research interests include transport protocols,

congestion control, delay-tolerant networking, and wireless networks and
systems. He is a member of the Association for Computing Machinery.

Minglong Dai received the B.E. degree in computer
science from the University of Technology, Dalian,
China, in 2016. He is currently pursuing the master’s
degree in computer science and technology at the
Beijing University of Posts and Communication,
supervised by Prof. Y. Cui. His research interests
include computer network architecture and computer
network protocol.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

230 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

Kai Zheng (M’02–SM’12) received the M.S. and
Ph.D. degrees from Tsinghua University, China,
in 2003 and 2006, respectively. His Ph.D. thesis
received the first outstanding Ph.D. thesis award
from the Chinese Computer Federation in 2006.
He joined Huawei Technologies Co., Ltd., in 2015,
as the Chief Architecture and the Director, Protocol
R&D. Before that, he was a Senior Research Staff
Member at IBM Research. His current research
interests include data center networking, protocol
intelligence, software defined (transport) protocols,

WAN accelerations, and IoT protocols.

Yi Li received the B.E. and Ph.D. degrees in
computer science and engineering from Tsinghua
University in 1996 and 2000, respectively. He is
currently at Beijing Powerinfo Co., Ltd., as CTO.
His research interests include video encoding and
transmission.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

